×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Sensor selection is a useful method to help reduce data throughput, as well
as computational, power, and hardware requirements, while still maintaining
acceptable performance. Although minimizing the Cram\'er-Rao bound has been
adopted previously for sparse sensing, it did not consider multiple targets and
unknown source models. We propose to tackle the sensor selection problem for
angle of arrival estimation using the worst-case Cram\'er-Rao bound of two
uncorrelated sources. We cast the problem as a convex semi-definite program and
retrieve the binary selection by randomized rounding. Through numerical
examples related to a linear array, we illustrate the proposed method and show
that it leads to the selection of elements at the edges plus the center of the
linear array.

Click here to read this post out
ID: 304313; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Aug. 1, 2023, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 1089
CC:
No creative common's license
Comments: